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Task

Environment

Science

World News 

Tech

Taste

text classification
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Problem
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original feature space

Indistinguishable between categories



Issue

query

misclassify

class similar
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Guess

task1

task2

replace

task1

task2

consider the inter-class 
variance of support sets
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method



Solution

cannot distinguish between categories 

projection

another space

helpful to enhance the divergence between class prototypes 

Task-Adaptive Reference 
Transfer Module

original feature space

another  space
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Architecture
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support 

support query
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Prototype matrix

N=3 , K = 3

support 

support query

train test

K = 3 shot

P = 3 * 128

p1 = 1 * 128
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Reference layer

N = 3 E = 128

linear layer

reference vectors

random init

r1 = 1 * 128

r2 = 1 * 128

r3 = 1 * 128

R = 3 * 128

N = 3
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generate reference vector



Transformation matrix

P = 3 * 128 R = 3 * 128

W = 128*128

normal equation
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Predict query
softmax
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Classification Loss

-log

https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html

Negative Log Likelihood(NLL loss)

|Q|
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softmax



Discriminative Reference Regularization

Maximize distance between prototypes
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Algorithm
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Datasets

Datasets Content E.g. Avg. # 
tokens/sample class samples # train/val/test 

classes

HuffPost 
headlines

news 
headlines 犯罪、娛樂、世界新聞、政治 ... 11 41 36900 20/5/16

Amazon product 
data

product 
reviews 書、電子、電影、電玩遊戲 ... 140 24 24000 10/5/9

Reuters-21578 Reuters 
Articles 貿易、糧食、原油、植物油、黃金 ... 168 31 620 15/5/11

20 Newsgroups newsgroups 電子、醫學、宗教、政治、電腦硬體 ... 340 20 18820 8/5/7
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Baseline - MAML

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

19

meta framework

update task 
parameter



Baseline - PROTO
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Prototypical Networks for Few-shot Learning

prototype

update task 
parameter



Baseline - Latent Embedding Optimization (LEO)

Meta-Learning with Latent Embedding Optimization
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learns a low-dimensional 
latent embedding

1 shot、5 shot  -> model overfitting



Baseline - Induction Networks
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Induction Networks for Few-Shot Text Classification

learn a general representation of each 
class in the support set and then 
compare it to new queries

prototype with dynamic routing 



Baseline - Hybrid Attention(HATT)
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Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification

透過每個input feature計算一個重要性分數

透過注意力，選擇與query 最相似的instance

hybrid attention-based prototype

prototype Attention-based 
prototype



Baseline - DS-FSL

24

FEW-SHOT TEXT CLASSIFICATION WITH DISTRIBUTIONAL SIGNATURES attention with Distributional signatures

distributional 
signatures

support 

attention score

meta parameter



Baseline - Meta-Learning Adversarial Domain 
Adaptation(MLADA)

Meta-Learning Adversarial Domain Adaptation Network for Few-Shot Text Classification
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Adversarial Domain Adaptationdomain adversarial network + meta-learning 
= transferable features

confusion 
model

distinguish
source/query



Baseline - LEarning-to-Attend(LEA)
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LEA: Meta Knowledge-Driven Self-Attentive Document Embedding for Few-Shot Text Classification

Attention + Meta

top-k attention score

support 



Baseline - ContrastNet
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ContrastNet: A Contrastive Learning Framework for Few-Shot Text Classification



Experiment
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Experiment
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Experiment
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Experiment
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Ablation Study - Discriminative Reference Regularization(DRR)
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Maximize distance between prototypes



Ablation Study - Using BERT
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● PLM denotes prompting language model 
● EK denotes extra knowledge (unlabeled data)

top-k attention
GNN
prompt-based
contrast-base

TART with fastText + BiLSTM

bert has richer semantic representation than fastText
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Conclusion

● propose a novel TART for fewshot text classification 

● enhance the generalization by transforming the class prototypes to per-class fixed 

reference points in task-adaptive metric spaces

● discriminative reference regularization to maximize divergence between 

transformed prototypes
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