TART: Improved Few-shot Text Classification Using Task-Adaptive Reference Transformation method

Advisor : Jia-Ling, Koh

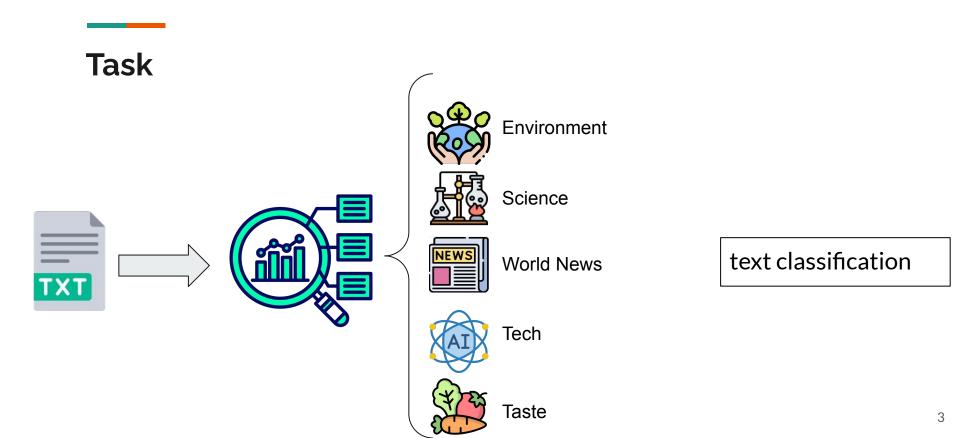
Speaker : Ting-I, Weng

Source : ACL'23

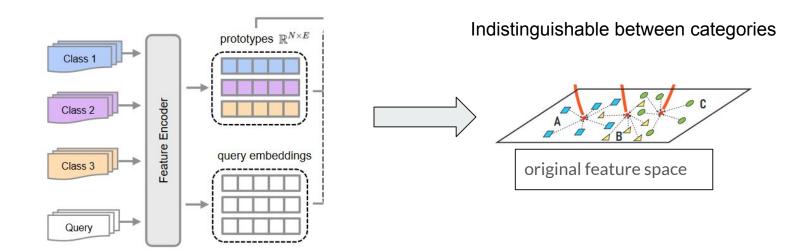
Date : 2024/03/05

Outline

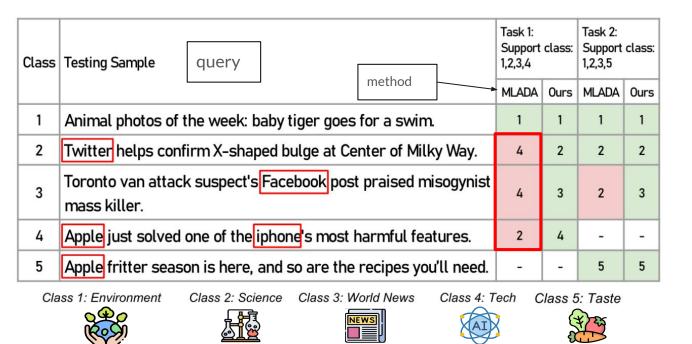
- Introduction
- Method
- Experiment
- Conclusion



Problem



Issue



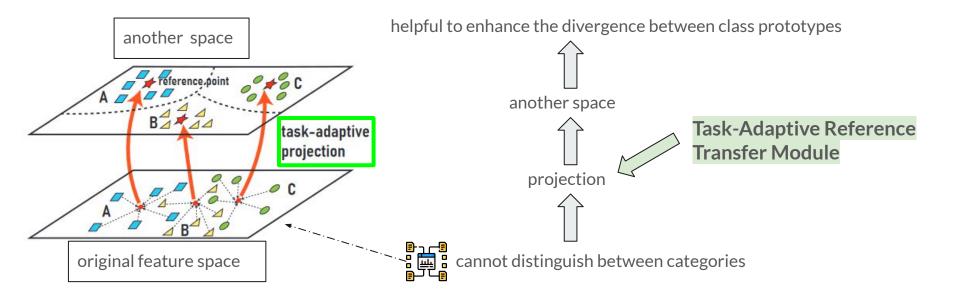
technology company

class similar

5

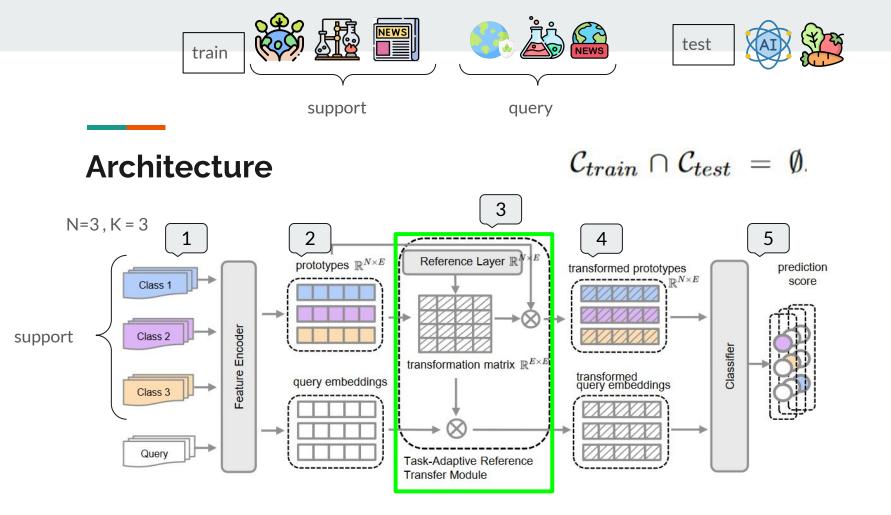
	Guess			Z		task1 👸 🜆 🗐
Class	Testing Sample method	Task 1: Suppor 1,2,3,4		Task 2: Support 1,2,3,5		replace
1	Animal photos of the week: baby tiger goes for a swim.	MLADA	Ours	MLADA	Ours	task2
2	Twitter helps confirm X-shaped bulge at Center of Milky Way.	4	2	2	2	
3	Toronto van attack suspect's Facebook post praised misogynist mass killer.	4	3	2	3	
4	Apple just solved one of the iphone's most harmful features.	2	4	-	-	
5	Apple fritter season is here, and so are the recipes you'll need.		-	5	5	consider the inter-class
Cla	ss 1: Environment Class 2: Science Class 3: World News Class 4: 7	Tech (Class 5	5: Taste		variance of support sets

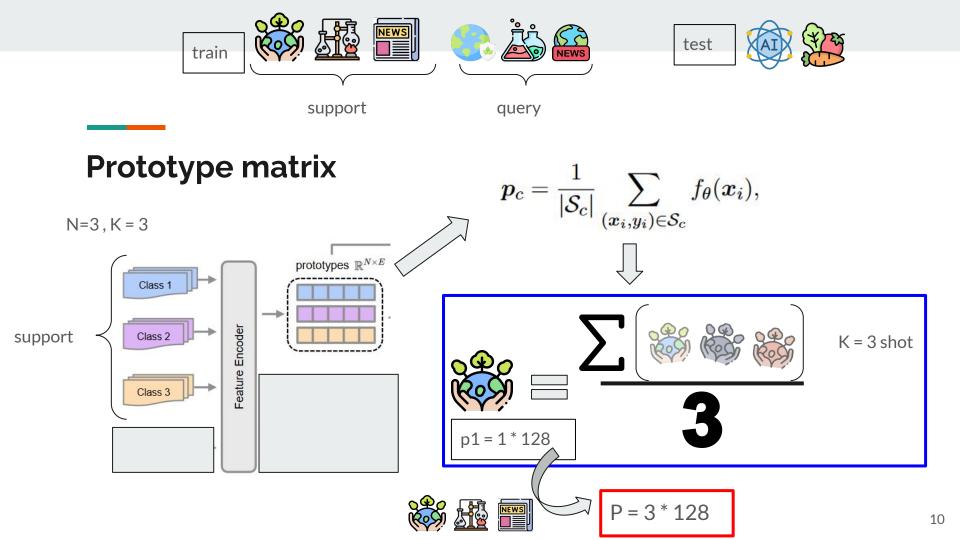
Solution

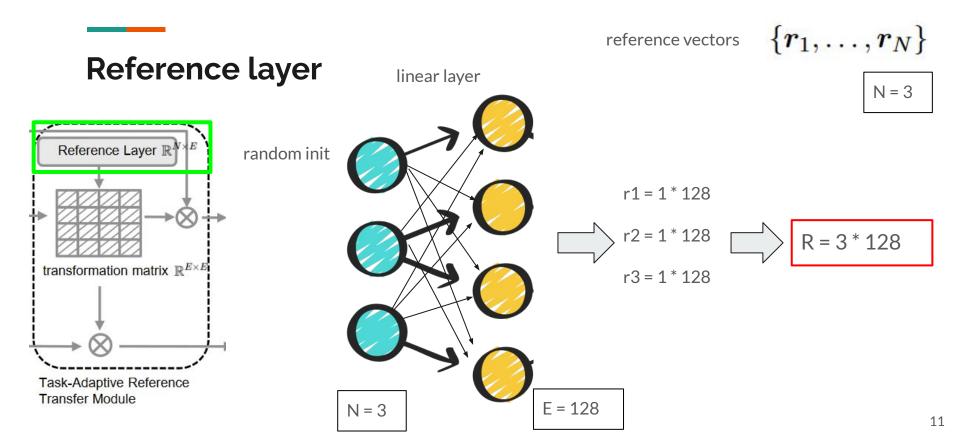


Outline

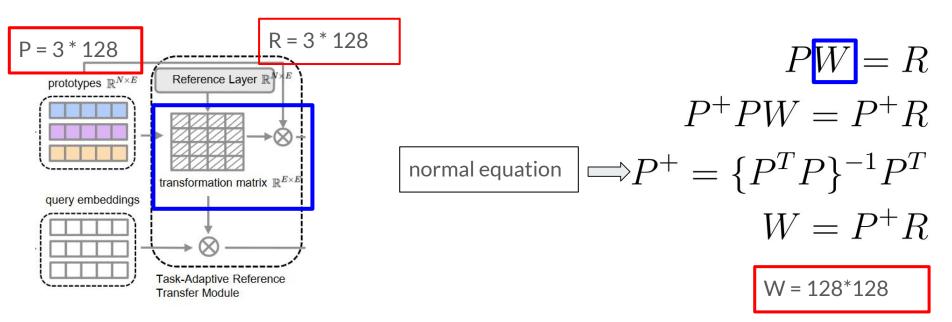
- Introduction
- Method
- Experiment
- Conclusion

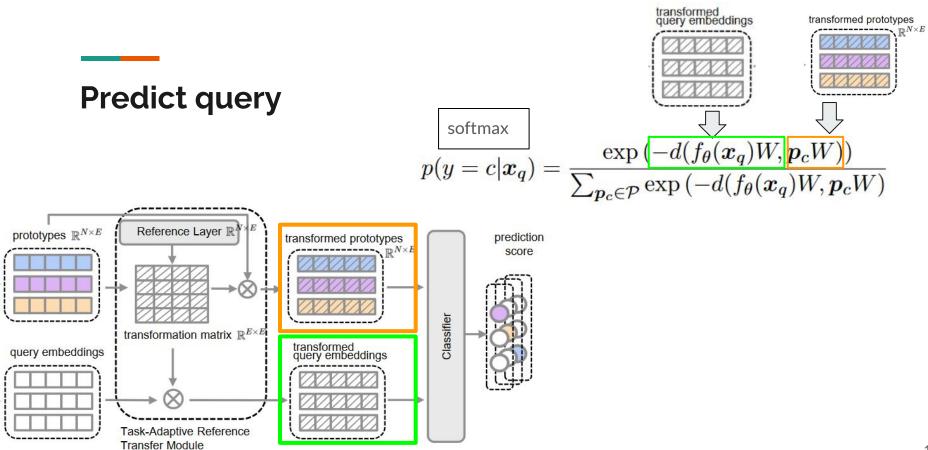






Transformation matrix





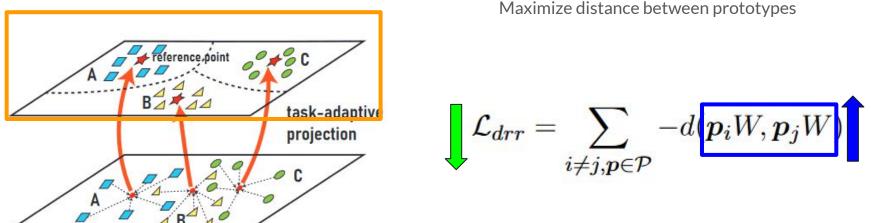
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html

Classification Loss

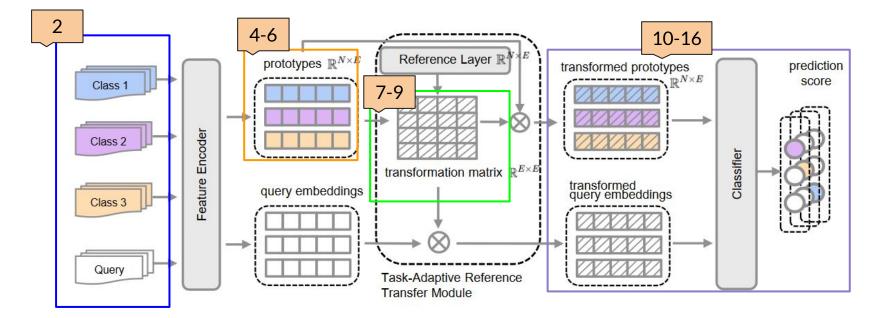
$$\mathcal{L}_{cls} = \frac{1}{|\mathcal{Q}|} \sum_{\boldsymbol{x}_q \in \mathcal{Q}} [d(f_{\theta}(\boldsymbol{x}_q)W, \boldsymbol{p}_cW) + \log \sum_{\boldsymbol{p}_c \in \mathcal{P}} \exp\left(-d(f_{\theta}(\boldsymbol{x}_q)W, \boldsymbol{p}_cW))\right] \qquad -\log \left\{ p(y = c | \boldsymbol{x}_q) = \frac{\exp\left(-d(f_{\theta}(\boldsymbol{x}_q)W, \boldsymbol{p}_cW)\right)}{\sum_{\boldsymbol{p}_c \in \mathcal{P}} \exp\left(-d(f_{\theta}(\boldsymbol{x}_q)W, \boldsymbol{p}_cW)\right)} \right\}$$

Negative Log Likelihood(NLL loss)

Discriminative Reference Regularization



Algorithm



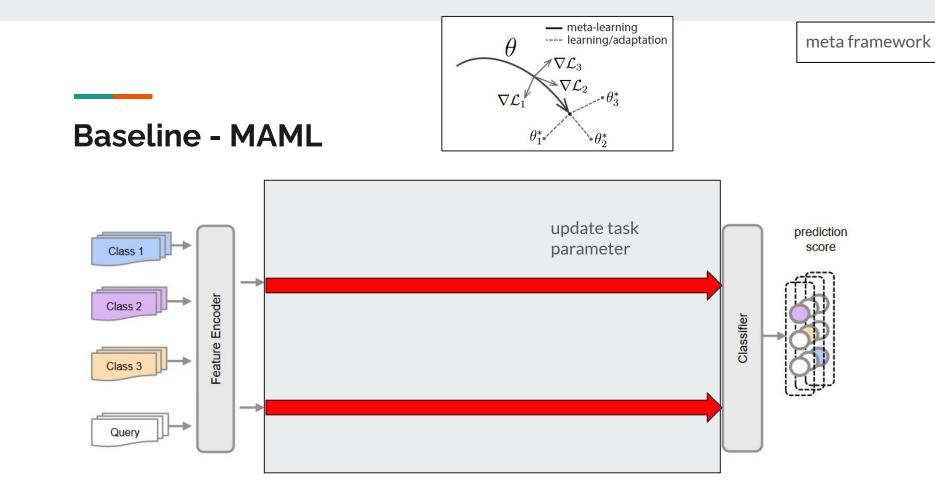
Outline

- Introduction
- Method
- Experiment
- Conclusion

Datasets

Datasets	Content	E.g.	Avg. # tokens/sample	class	samples	# train/val/test classes
HuffPost headlines	news headlines	犯罪、娛樂、世界新聞、政治	11	41	36900	20/5/16
Amazon product data	product reviews	書、電子、電影、電玩遊戲	140	24	24000	10/5/9
Reuters-21578	Reuters Articles	貿易、糧食、原油、植物油、黃金	168	31	620	15/5/11
20 Newsgroups	newsgroups	電子、醫學、宗教、政治、電腦硬體	340	20	18820	8/5/7

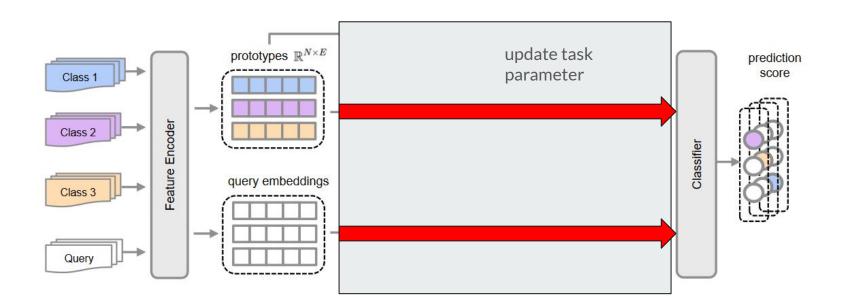
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks



Prototypical Networks for Few-shot Learning

prototype

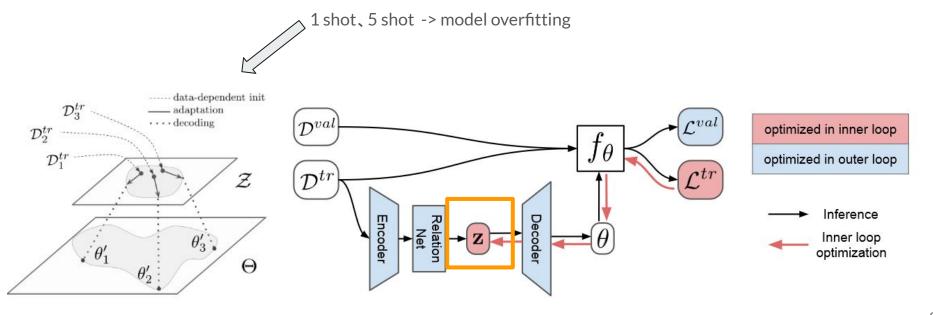
Baseline - PROTO



Meta-Learning with Latent Embedding Optimization

learns a low-dimensional latent embedding

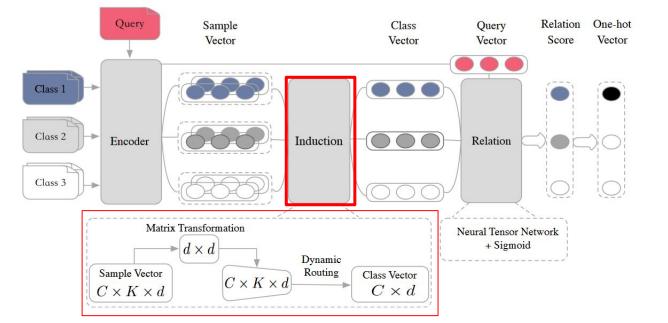
Baseline - Latent Embedding Optimization (LEO)



prototype with dynamic routing

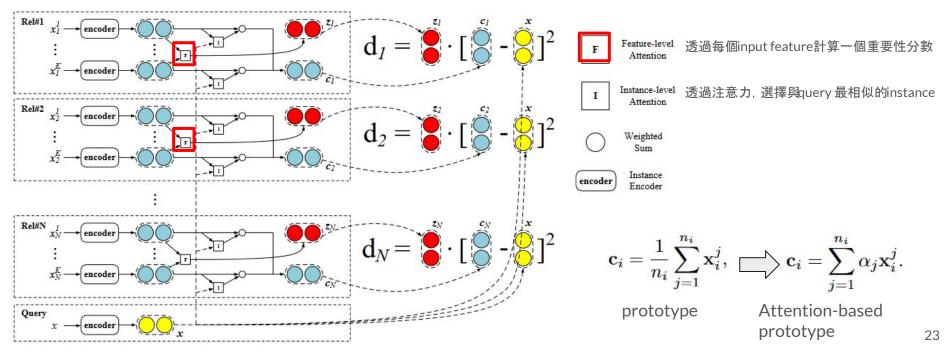
Baseline - Induction Networks

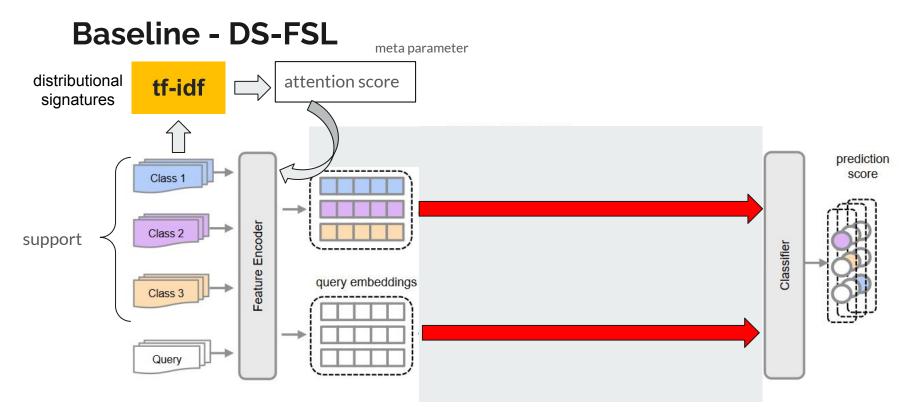
learn a general representation of each class in the support set and then compare it to new queries



hybrid attention-based prototype

Baseline - Hybrid Attention(HATT)

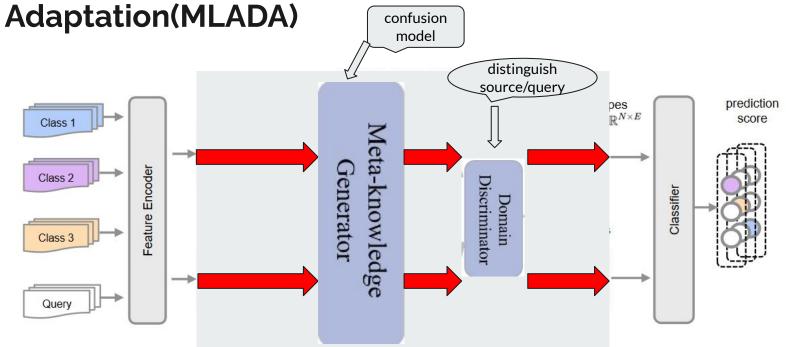




Meta-Learning Adversarial Domain Adaptation Network for Few-Shot Text Classification

domain adversarial network + meta-learning = transferable features Adversarial Domain Adaptation

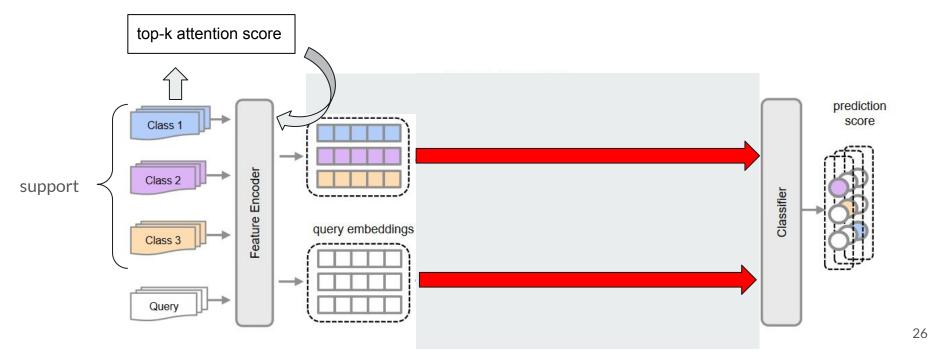
Baseline - Meta-Learning Adversarial Domain



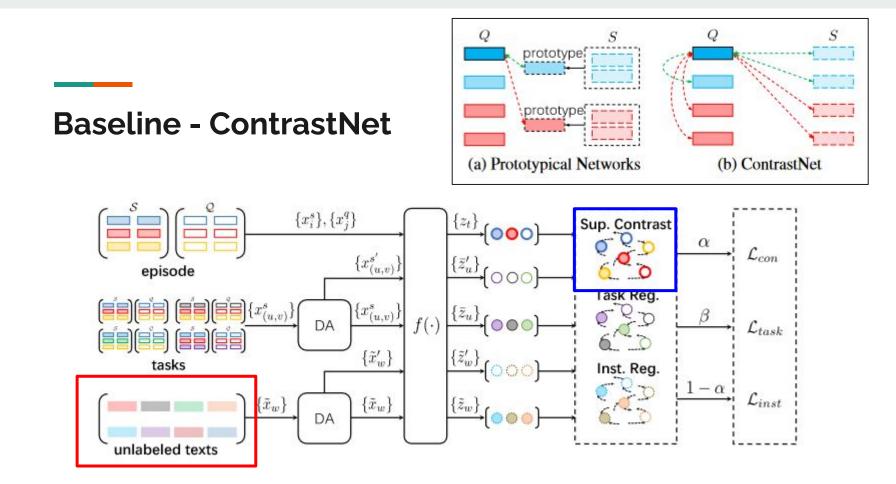
25

Attention + Meta

Baseline - LEarning-to-Attend(LEA)



ContrastNet: A Contrastive Learning Framework for Few-Shot Text Classification



Method	Huff	Post	Ama	azon	Reu	ters	20 N	lews	Ave	rage
wiethod	1 shot	5 shot								
MAML (2017)	35.9	49.3	39.6	47.1	54.6	62.9	33.8	43.7	40.9	50.8
PROTO (2017)	35.7	41.3	37.6	52.1	59.6	66.9	37.8	45.3	42.7	51.4
LEO* (2018)	28.8	42.3	39.5	52.5	35.4	54.1	36.4	52.2	35.0	50.3
Induct (2019)	38.7	49.1	34.9	41.3	59.4	67.9	28.7	33.3	40.4	47.9
HATT (2019)	41.1	56.3	49.1	66.0	43.2	56.2	44.2	55.0	44.4	58.4
DS-FSL (2020)	43.0	63.5	62.6	81.1	81.8	96.0	52.1	68.3	59.9	77.2
MLADA (2021)	45.0	64.9	68.4	86.0	82.3	96.7	59.6	77.8	63.9	81.4
LEA (2022)	46.2	65.8	66.5	83.5	69.0	89.0	54.1	60.2	58.9	74.6
TART	46.9	66.8	70.1	82.4	92.2	96.7	67.0	83.2	69.0	82.3

solve time-consuming

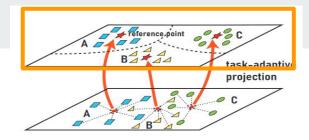
Method	Huff	Post	Ama	azon	Reu	ters	20 N	lews	Ave	rage
Wiethou	1 shot	5 shot								
MAML (2017)	35.9	49.3	39.6	47.1	54.6	62.9	33.8	43.7	40.9	50.8
PROTO (2017)	35.7	41.3	37.6	52.1	59.6	66.9	37.8	45.3	42.7	51.4
LEO* (2018)	28.8	42.3	39.5	52.5	35.4	54.1	36.4	52.2	35.0	50.3
Induct (2019)	38.7	49.1	34.9	41.3	59.4	67.9	28.7	33.3	40.4	47.9
HATT (2019)	41.1	56.3	49.1	66.0	43.2	56.2	44.2	55.0	44.4	58.4
DS-FSL (2020)	43.0	63.5	62.6	81.1	81.8	96.0	52.1	68.3	59.9	77.2
MLADA (2021)	45.0	64.9	68.4	86.0	82.3	96.7	59.6	77.8	63.9	81.4
LEA (2022)	46.2	65.8	66.5	83.5	69.0	89.0	54.1	60.2	58.9	74.6
TART	46.9	66.8	70.1	82.4	92.2	96.7	67.0	83.2	69.0	82.3

solve time-consuming

Method	Huff	Post	Ama	azon	Reu	iters	20 N	lews	Ave	rage
Method	1 shot	5 shot								
MAML (2017)	35.9	49.3	39.6	47.1	54.6	62.9	33.8	43.7	40.9	50.8
PROTO (2017)	35.7	41.3	37.6	52.1	59.6	66.9	37.8	45.3	42.7	51.4
LEO* (2018)	28.8	42.3	39.5	52.5	35.4	54.1	36.4	52.2	35.0	50.3
Induct (2019)	38.7	49.1	34.9	41.3	59.4	67.9	28.7	33.3	40.4	47.9
HATT (2019)	41.1	56.3	49.1	66.0	43.2	56.2	44.2	55.0	44.4	58.4
DS-FSL (2020)	43.0	63.5	62.6	81.1	81.8	96.0	52.1	68.3	59.9	77.2
MLADA (2021)	45.0	64.9	68.4	86.0	82.3	96.7	59.6	77.8	63.9	81.4
LEA (2022)	46.2	65.8	66.5	83.5	69.0	89.0	54.1	60.2	58.9	74.6
TART	46.9	66.8	70.1	82.4	92.2	96.7	67.0	83.2	69.0	82.3

solve time-consuming

Method	Huff	Post	Ama	azon	Reu	ters	20 N	lews	Ave	rage
wiethou	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot
MAML (2017)	35.9	49.3	39.6	47.1	54.6	62.9	33.8	43.7	40.9	50.8
PROTO (2017)	35.7	41.3	37.6	52.1	59.6	66.9	37.8	45.3	42.7	51.4
LEO* (2018)	28.8	42.3	39.5	52.5	35.4	54.1	36.4	52.2	35.0	50.3
Induct (2019)	38.7	49.1	34.9	41.3	59.4	67.9	28.7	33.3	40.4	47.9
HATT (2019)	41.1	56.3	49.1	66.0	43.2	56.2	44.2	55.0	44.4	58.4
DS-FSL (2020)	43.0	63.5	62.6	81.1	81.8	96.0	52.1	68.3	59.9	77.2
MLADA (2021)	45.0	64.9	68.4	86.0	82.3	96.7	59.6	77.8	63.9	81.4
LEA (2022)	46.2	65.8	66.5	83.5	69.0	89.0	54.1	60.2	58.9	74.6
TART	46.9	66.8	70.1	82.4	92.2	96.7	67.0	83.2	<mark>69.0</mark>	82.3



 $\mathcal{L}_{drr} = \sum -d(\boldsymbol{p}_i W, \boldsymbol{p}_j W)$ $i \neq j, p \in \mathcal{P}$

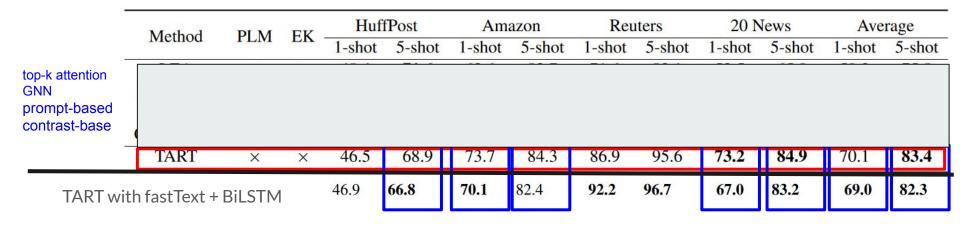
Maximize distance between prototypes

Ablation Study - Discriminative Reference Regularization(DRR)

Method	HuffPost		Amazon		Reu	iters	20 News		Average	
Method	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot
TART w/o DRR	48.4	66.0	68.9	83.5	90.4	96.2	66.4	82.2	68.5	81.9

- PLM denotes prompting language model
- EK denotes extra knowledge (unlabeled data)

Ablation Study - Using BERT



bert has richer semantic representation than fastText

Outline

- Introduction
- Method
- Experiment
- Conclusion

Conclusion

• propose a novel TART for fewshot text classification

• enhance the generalization by transforming the class prototypes to per-class fixed reference points in task-adaptive metric spaces

• discriminative reference regularization to maximize divergence between transformed prototypes